In electrical networks, there are often emergencies that lead to power outages. In order to avoid them, it is necessary to create systems that monitor the state of the electrical network and the processes taking place in it. One such system is a system for synchronous measurement of network parameters at two different points at the same time (PMU system). The points at which the measurement is made are often significantly removed from each other (for tens to hundreds of kilometers). Synchronize measurements using a cable line in this situation is impossible. Because of this, you need to use the GPS time signals to synchronize. To develop PMU-systems, it is necessary to test the operation of such a system. It is necessary to test the work in conditions of a low level of the received GPS-signal, its interference or a high level of interference.

The problem or task

For research purposes, it was necessary to develop a system capable of generating GPS signals. The purpose of the development is to simulate the interference of GPS signals and to study the influence of the quality and level of the satellite signals received by the distributed system on the accuracy of the measurement synchronization


To solve the problem, a GPS signal generator was developed. The generator made it possible to simulate various conditions for receiving a GPS signal by a synchronous measurement system. The GPS signal generator is built on the PXI platform. The generator is controlled by the NI PXIe 8115 controller installed in the NI PXIe 1062Q chassis. The main element of the system was the NI PXIe-250 2,7 KHz-5672 GHz vector signal generator. The RF generator consists of an arbitrary waveform generator NI PXIe 5442 and a frequency converter of the RF signal with an increase of NI PXI 5610. The software was created in the NI LabVIEW programming environment. The RF signal shaping module according to the GPS standard was developed using the NI GNSS Simulation toolkit. The developed system made it possible to study the influence of the quality of the GPS signal on the accuracy of measurement synchronization. This made it possible to develop a synchronous measurement system with a desync value not exceeding 1 μs.


is hidden

project Year